Noise analysis of MAP-EM algorithms for emission tomography.
نویسندگان
چکیده
The ability to theoretically model the propagation of photon noise through PET and SPECT tomographic reconstruction algorithms is crucial in evaluating the reconstructed image quality as a function of parameters of the algorithm. In a previous approach for the important case of the iterative ML-EM (maximum-likelihood-expectation-maximization) algorithm, judicious linearizations were used to model theoretically the propagation of a mean image and a covariance matrix from one iteration to the next. Our analysis extends this approach to the case of MAP (maximum a posteriori)-EM algorithms, where the EM approach incorporates prior terms. We analyse in detail two cases: a MAP-EM algorithm incorporating an independent gamma prior, and a one-step-late (OSL) version of a MAP-EM algorithm incorporating a multivariate Gaussian prior, for which familiar smoothing priors are special cases. To validate our theoretical analyses, we use a Monte Carlo methodology to compare, at each iteration, theoretical estimates of mean and covariance with sample estimates, and show that the theory works well in practical situations where the noise and bias in the reconstructed images do not assume extreme values.
منابع مشابه
Utilization of an optimum low-pass filter during filtered back-projection in the reconstruction of single photon emission computed tomography images of small structures
Introduction:Low-pass filters eliminate noise, and accordingly improve the quality of filtered back-projection (FBP) in the reconstruction of single photon emission computed tomography (SPECT) images. This study aimed at selection of an optimum low-pass filter for FBP reconstruction of SPECT images of small structures. Material and Methods:Sp...
متن کاملAn overview of fast convergent ordered-subsets reconstruction methods for emission tomography based on the incremental EM algorithm.
Statistical reconstruction has become popular in emission computed tomography but suffers slow convergence (to the MAP or ML solution). Methods proposed to address this problem include the fast but non-convergent OSEM and the convergent RAMLA [1] for the ML case, and the convergent BSREM [2], relaxed OS-SPS and modified BSREM [3] for the MAP case. The convergent algorithms required a user-deter...
متن کاملFast Scaled Gradient Decomposition Met hods for Maximum Likelihood Transmission Tomography
New iterative algorithms are presented for Maximum Likelihood (ML) and Regularized Maximum Likelihood (MAP) reconstruction in Transmission Tomography (CT). The algorithms are natural extensions to CT of RAMLA, a well known method for ML reconstruction in Emission Computed Tomography (ECT). We show that the new algorithm for ML solutions produces similar, or even better results than EM-like algo...
متن کاملForward-Backward EM-TV methods for inverse problems with Poisson noise
We address the task of reconstructing images corrupted by Poisson noise, which is important in various applications, such as fluorescence microscopy, positron emission tomography (PET), or astronomical imaging. In this work, we focus on reconstruction strategies, combining the expectation-maximization (EM) algorithm and total variation (TV) based regularization, and present a detailed analysis ...
متن کاملFast Globally Convergent Reconstruction in Emission Tomography Using COSEM, an Incremental EM Algorithm
We present globally convergent incremental EM algorithms for reconstruction in emission tomography, COSEMML for maximum likelihood and COSEM-MAP for maximum a posteriori reconstruction. The COSEM (Complete data Ordered Subsets Expectation Maximization) algorithms use ordered subsets (OS) for fast convergence, but unlike other globally convergent OS-based ML and MAP algorithms such as RAMLA (Bro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 42 11 شماره
صفحات -
تاریخ انتشار 1997